Hacking on decoy-state quantum key distribution system with partial phase randomization
نویسندگان
چکیده
Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.
منابع مشابه
Retraction: Hacking on decoy-state quantum key distribution system with partial phase randomization
This corrects the article DOI: 10.1038/srep04759.
متن کاملGeneral theory for decoy-state quantum key distribution with arbitrary number of intensities
Abstract. We develop a general theory for quantum key distribution (QKD) in both the forward error correction and the reverse error correction cases when the QKD system is equipped with phase-randomized coherent light with arbitrary number of decoy intensities. For this purpose, generalizing Wang’s expansion, we derive a convex expansion of the phase-randomized coherent state. We also numerical...
متن کاملDecoy State Quantum Key Distribution
Experimental weak + vacuum protocol has been demonstrated using commercial QKD system based on a standard bi-directional ‘Plug & Play’ set-up. By making simple modifications to a commercial quantum key distribution system, decoy state QKD allows us to achieve much better performance than QKD system without decoy state in terms of key generation rate and distance. We demonstrate an unconditional...
متن کاملExperimental demonstration of polarization encoding measurement-device-independent quantum key distribution.
We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implem...
متن کاملPassive Decoy State Quantum Key Distribution
The use of decoy states enhances the performance of practical quantum key distribution systems significantly by monitoring the quantum channel in a more detailed way. While active modulation of the intensity of the pulses is an effective way of preparing decoy states in principle, in practice passive preparation might be desirable in some scenarios. Known passive methods involve parametric down...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014